WPI Mathematical Sciences Ph.D. General Comprehensive Exam MA 541, August, 2016

Prove all results. You may quote standard named results proved in class.

- 1. Let X_1, \ldots, X_n be a random sample from a distribution with pdf $f(x|\theta) = e^{-(x-\theta)}I_{(\theta,\infty)}(x)$, where $-\infty < \theta < \infty$. Show that $X_{(1)} = \min_{1 \le i \le n} \{X_i\}$ and the sample variance S^2 are independent.
- 2. Suppose X_1, \dots, X_n is a random sample from a binomial distribution with parameters N and θ , i.e., $Bin(N, \theta)$, where N is a positive integer and $0 < \theta < 1$.
 - (a) Determine the maximum likelihood estimator $\hat{\theta}$ for θ using the X_i .
 - (b) Show

$$\tilde{\theta} = \frac{\bar{X}}{\max\{X_1, \cdots, X_n\}}$$

is a consistent estimator of θ .

- (c) For large n, which estimator $\hat{\theta}$ or $\tilde{\theta}$, would you prefer? Justify.
- 3. As in the previous problem, suppose X_1, \dots, X_n is a random sample from a binomial distribution with parameters N and θ , i.e., $Bin(N, \theta)$, where N is a positive integer and $0 < \theta < 1$.
 - (a) Find an approximate 95% confidence interval for θ .
 - (b) Consider the hypothesis:

$$H_0: \theta \leq \theta_0, \quad v.s. \quad H_1: \theta > \theta_0,$$

for some specified value θ_0 . Give the uniformly most powerful test at the α level of significance. Justify.

- 4. Let $X_1, \ldots, X_n \mid \mu, \sigma^2 \stackrel{iid}{\sim} \text{Normal}(\mu, \sigma^2)$. Let \bar{X} denote the sample mean and S^2 the sample variance. Find $f(x_1, \ldots, x_n \mid \bar{x}, s^2, \mu, \sigma^2)$. Are there surprises? Explain.
- 5. Let $Y_i \stackrel{ind}{\sim} \text{Bernoulli}\{\frac{e^{x_i\beta}}{1+e^{x_i\beta}}\}$, where x_1,\ldots,x_n are fixed known real numbers. What conditions are needed for the existence of the MLE of β ? Write down an approximate distribution for the MLE. Find an approximate 95% confidence interval for β . If you were able to find the exact interval, would it be shorter or longer than the approximate one? Explain.